Presynaptically silent synapses: spontaneously active terminals without stimulus-evoked release demonstrated in cortical autapses.
نویسندگان
چکیده
This study addresses the question of whether synapses that are capable of releasing transmitters spontaneously can also release them in an excitation-dependent manner. For this purpose, whole cell patch recordings were performed for a total of 48 excitatory solitary neurons in a microisland culture to observe excitatory autaptic currents elicited by spontaneous transmitter release as well as by somatic excitation. A somatic Na+-spike, induced in response to a short voltage step, evoked excitatory postsynaptic currents (EPSCs) of various amplitudes through the autapses; in some cases, no response was noticeable. To make sure that the recorded autaptic spontaneous EPSCs (sEPSCs) under a voltage clamp resulted from independent release of transmitters and were not associated with action potentials, sEPSCS in the presence and absence of tetrodotoxin (TTX) were compared in six cells. In the presence of TTX the evoked EPSCs were completely eliminated, whereas the sEPSCs were still observed and the amplitude distribution histograms were statistically not different from those recorded in the absence of TTX. A quantitative analysis of the sEPSCs (presumably miniature EPSCs) showed that the amplitude of stimulus-evoked EPSCs did not correlate with either the frequency or median amplitudes of the sEPSCs or the age of the culture. To identify whether the absence of stimulus-evoked response was caused either by conduction failure of excitation along the axons or by impairment of the release machinery that links the terminal depolarization to vesicle exocytosis, we examined whether high K+ and hypertonic solutions could facilitate the spontaneous release of transmitters. Although the hypertonic solution increased the spontaneous release in all cells tested (n = 18), the high K+ solution had a differential effect in increasing spontaneous release, i.e., the cells with larger evoked responses were more readily facilitated by the high K+ solution. Because the high K+ solution induced depolarization of presynaptic terminals, the present results indicated that the smaller evoked responses were due to the larger number of impaired or "silent" presynaptic terminals that were unable to link presynaptic depolarization to transmitter release. In summary, the present experiments provided evidence that at least some of the presynaptic terminals are silent in response to stimuli, while remaining spontaneously active at the same time. Because this phenomenon is due to the lack of sensitivity to depolarization at the terminals, these synaptic terminals seem incapable of linking terminal depolarization to transmitter release.
منابع مشابه
Distinct transmitter release properties determine differences in short-term plasticity at functional and silent synapses.
Recent evidence suggests that functional and silent synapses are not only postsynaptically different but also presynaptically distinct. The presynaptic differences may be of functional importance in memory formation because a proposed mechanism for long-term potentiation is the conversion of silent synapses into functional ones. However, there is little direct experimentally evidence of these d...
متن کاملCannabinoid Type 1 Receptors Transiently Silence Glutamatergic Nerve Terminals of Cultured Cerebellar Granule Cells
Cannabinoid receptors are the most abundant G protein-coupled receptors in the brain and they mediate retrograde short-term inhibition of neurotransmitter release, as well as long-term depression of synaptic transmission at many excitatory synapses. The induction of presynaptically silent synapses is a means of modulating synaptic strength, which is important for synaptic plasticity. Persistent...
متن کاملPresynaptically Silent Synapses Studied with Light Microscopy
Synaptic plasticity likely underlies the nervous system's ability to learn and remember and may also represent an adaptability that prevents otherwise damaging insults from becoming neurotoxic. We have been studying a form of presynaptic plasticity that is interesting in part because it is expressed as a digital switching on and off of a presynaptic terminal s ability to release vesicles contai...
متن کاملRapid activation of dormant presynaptic terminals by phorbol esters.
Presynaptic stimulation stochastically recruits transmission according to the release probability (P(r)) of synapses. The majority of central synapses have relatively low P(r), which includes synapses that are completely quiescent presynaptically. The presence of presynaptically dormant versus active terminals presumably increases synaptic malleability when conditions demand synaptic strengthen...
متن کاملDevelopmental reduction of asynchronous GABA release from neocortical fast-spiking neurons.
Delayed asynchronous release (AR) evoked by bursts of presynaptic action potentials (APs) occurs in certain types of hippocampal and neocortical inhibitory interneurons. Previous studies showed that AR provides long-lasting inhibition and desynchronizes the activity in postsynaptic cells. However, whether AR undergoes developmental change remains unknown. In this study, we performed whole-cell ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 77 5 شماره
صفحات -
تاریخ انتشار 1997